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U(2, 2) Symmetry as a Common Basis for Quantum
Theory and Geometrodynamics
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We formulated some criticisms of the Dirac equation and its Clifford-algebr aic
philosophy; in particular, we show that, within a general-relativistic context, they
seem to contain hidden action-at-distance concepts. We suggest a new model
based on the four-component Klein±Gordon equation locally invariant under the
U (2,2) gauge group. The usual Dirac equation is then obtained as a certain
approximation. The geometrodynami cal sector shows reasonable correspondence
with general relativity.

1. INTRODUCTION. OBJECTIONS AGAINST DIRAC THEORY

The historical incompatibility between the Hilbert space formalism of

quantum mechanics and relativity theory has been one of the greatest chal-
lenges of twentieth century physics. At the same time, either of these disci-

plines taken in itself has its own problems, like measurement in quantum

mechanics and singularities in gravitation. As both theories contain a profound

physical truth, the idea appeared that somewhere at the interface of quanta

and relativity a new theory might appear which, including their successes,

could also solve their paradoxes and unify them into a compatible whole. The
essential nonlinearity of generally covariant theories could perhaps overcome

quantum mechanical measurement paradoxes, whereas quantum effects could

(as a matter of fact, they do) modify our understanding of gravitational

singularities. There is a philosophical paradigm due to Finkelstein, Penrose,

and WeizsaÈ cker (Castell et al., 1975, Penrose and Rindler, 1984) according

to which the common roots of quanta and relativity are based on the geometry
of two-component spinors, describing the most elementary physical entities.
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The superposition principle, wave±particle dualism, the four-dimensionality

of space-time and its normal-hyperbolic signature, perhaps even the arrow

of time, seem to be somehow unified just on the level of the two-component
spinor as a C-linear shell of the elementary yes±no alternative Z2 of irreducible

measurements. Within this philosophy, the Dirac bispinor appears as a second-

ary constructionÐ an important element of the tower of algebraic structures

over C2. Historically, bispinors appeared in a different way, in Dirac’ s attempts

at unifying quantum mechanics and special relativity and overcoming the

known failure of earlier efforts based on the Klein±Gordon equation.
In this way, Clifford algebras have been an important mathematical tool

of physics, together with the linearization idea of the d’ Alembert operator,

represented as the second power of the first-order Dirac operator, g m n - m - n I
5 2 (i g m - m )2; classically, g m n p m p n I 5 ( g m p m )2. Although it turned out rather

quickly, that the Dirac equation also could not work consistently as a one-

particle quantum mechanical equation, after the fermionic second quantization
based an anticommutators, it became an indispensable foundation of the

theory of elementary particles and fundamental interactions. In this way,

Clifford algebras and the corresponding linearization idea have been com-

monly recognized as the fundamental paradigm of physics.

In our opinion, the critical analysis of the interface between quanta and
relativity theory (both special and general) should start just here, from certain

objections against the Dirac theory. These objections seem to us particularly

convincing and natural within the general-relativistic context. In spite of the

amazing theoretical success of Dirac theory, we dare to raise the following

reproaches against it (Søawianowski 1996, 1997):

(i) Bad transformation properties under pseudo-unitary group U (2, 2) and
its quotient conformal group C(1, 3), although the internal metric ( 1 1 2 2 ) is

an inherent element of Dirac theory.

(ii) Mysterious structure of the Dirac Lagrangian, which is linear in a

quantity of the bosonic current structure, as if implied by the U (2, 2) symmetry

on some hidden, boson-like level.

(iii) The worst thing consists in hidden action-at-distance elements and
certain global rigidity, incompatible with the local paradigm of gauge theories.

In special relativity, the representation of Dirac matrices is physically irrele-

vant. In general relativity, this pattern is followed, although there are no

sufficient reasons for that. It is more natural to allow the representation to

change smoothly and dynamically over the space-time manifold, and this

should lead in principle to observable effects. How are remote quasars to
know the representation we decided to use?

(iv) In general relativity, the Clifford paradigm loses its conceptual

coherence and convincing power. Classically, it is still true, of course, that

( g m p m )2 5 g m n p m p n I, but the invariant d’ Alembert operator g m n iD m iD n I built
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of the spinor covariant derivative D m no longer equals (i g m D m )2. In Riemannian

space-time, the latter expression contracts to the form f I, but f also contains

some term proportional to the curvature scalar. The situation becomes even
worse in Riemann±Cartan space-times, which seem to provide a more appro-

priate framework for spinor theory. Namely, there is no contraction to a c-

number term, and (i g m D m )2 involves nontrivial matrix terms. Clifford aesthet-

ics disappears, and nonphysical globality becomes a price paid for nothing.

(v) Spinor theory must use the tetrad as one of the gravitational potentials.

There is no other ª trueº gauge theory using reference frames as dynamical
variables. Here it is necessary because the universal covering group of

SL(n, R) is no longer linear.

In the sequel we aim to show that these objections are answered if one

uses as a fundamental framework the four-componen t Klein±Gordon equation

with the local gauge group U (2, 2). This group and the number of components

are noncontingent if one believes in the Finkelstein±Penrose±WeizsaÈ cker

paradigm, as we do. Dirac theory is a low-energy limit of our model, and
the geometrodynamical sector shows a reasonable correspondence with gravi-

tation theory.

2. SECOND-ORDER DYNAMICAL MODEL WITH U (2, 2)
LOCAL INVARIANCE

Our dynamical variables are the four-componen t complex wave ampli-

tude c r, the connection form A r
s m taking values in u (4,G), i.e., in the Lie

algebra of pseudo-unitary group U (4,G), and the normal-hyperbolic field g m n .

The hermitian form G t s of signature ( 1 1 2 2 ) is our absolute element. The
Dirac conjugate is defined as c Ä t : 5 c sGsr . Of course, U (4,G) . U(2, 2).

The A-covariant differentiation involves two coupling constants: g, referring

to the simple part SU(4,G), and electromagnetic q, referring to the trace part.

The Levi-Civita covariant derivative of world quantities is also used; the

corresponding affine connection symbol is { l
m n }. It is convenient to thin unify

{ }- and A-differentiations into a single operation ¹ m . The curvature form of
A will be denoted by F 5 ¹ A; of course,

F m n 5 - m A n 2 - n A m 1 g[A m , A n ] (1)

Lagrangians for matter and geometry are given by

Lm( c ; A, g) 5
b

2
g m n ¹ m c Ä ¹ n c ! | g | 2

c

2
c Ä c ! | g | (2)

LYM(A, g) 5
a

4
Tr(F m n F

m n ) ! | g | 1
a8

4
Tr F m n Tr F m n ! | g | (3)

LHE(g) 5 2 dR(g) ! | g | 1 l ! | g | (4)
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where b, c, a, a8, d, l are constants, and R (g) denotes the curvature scalar

assigned to g. We did not make d, l precise here, but it must be stressed that

it is not only admissible, but perhaps suggested by analogy with the Palatini
principle, to admit the vanishing values d 5 0, l 5 0, retaining, nevertheless,

the dynamical character (variation) of g m n in the total Lagrangian. Nonvan-

ishing d, l, although acceptable, are probably redundant, just as they would

have been in the Palatini principle. Nevertheless, here we do not make their

values precise and put the total Lagrangian as L 5 Lm 1 LYM 1 LHE. Lagrangi-

ans lead to dynamical quantities, like the gauge field momentum, symmetric
energy-momentum tensors, and the U (2, 2) current of matter:

H m n 5 2 aF m n ! | g | 2 a8ITr F m n ! | g | (5)

T m n 5 T m n
m 1 T m n

YM (6)

I m 5
b

2
( c ¹ m c Ä 2 ¹ m c c Ä ) ! | g | (7)

The field equations read

g m n ¹ m ¹ n c 1
c

b
c 5 0 (8)

¹ n H
m n 5 gI m 1

q 2 g

4
Tr I m I (9)

d (R (g) m n 2
1

2
R (g)g m n ) 5 2

l

2
g m n 1

1

2
T m n (10)

[Recall that ¹ m acts on internal indices through the U (2,2) connection A,

and on world indices as the Levi-Civita connection { }.] To discuss the

correspondence with standard theory, we must perform the reduction to SL(2,

C) or GL(2, C) injected into U (4, G). It is clear that u(4, G) 5 iH(4, G),

where H (4, G) denotes the space of G-hermitian operators on C4. Let us
now fix an arbitrary representation of Dirac matrices g A, where, of course,

g A g B 1 g B g A 5 2 h ABI, [ h AB]

5 diag(1, 2 1, 2 1, 2 1), g A P H (4, G)

As usual, the remaining C-basic elements of L (4,C) are fixed as

g 5 5 2 g 5 5 2 g 0 g 1 g 2 g 3, A g 5 i g A g 5 5 2 i g 5 g A

S AB 5
1

4
( g A g B 2 g B g A) 5 2 S BA
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It is interesting that A g B g 1 B g A g 5 2 2 h ABI. The R-linear shell of Dirac

matrices,

V : 5 ^
3

A 5 0
R g A

is normal-hyperbolic with respect to A, B, j
1±4Tr(AB). Obviously, u (4, G)

5 iH(4,G) is an R-linear shell of matrices:

i g A, i A g , S AB, i g 5, iI

It is also convenient to use combinations:

t A 5
1

2
( g A 1 A g ), x A 5

1

2
( g A 2 A g )

The shift of uppercase indices is meant in the h -sense. In twistor theory t A

are known as generators of translations, whereas x A generate proper confor-

mal boosts.
Let us expand the connection form as follows:

A m 5
1

2g
G AB

m ( S AB 1
1

4
h AB

1

i
g 5) 1 e A

m i t A 1 fA m i x A 1 A8m iI (11)

where G AB
m are subject to the condition

G Ï AB
m 5 G AB

m 2
1

2
Q m h AB 5 2 G Ï BA

m (12)

to be satisfied for a certain one-form Q m known as the Weyl covector. Obvi-
ously, Lie algebras spanned by ( S AB), ( S AB , i g 5), and ( S AB ,i g 5, iI), are, respec-

tively, sl(2, C) 5 so(1, 3), Weyl algebra (linear-conformal), and gl(2, C)

(Weyl algebra with the electromagnetic gauging).

The bispinor connection is given by

v m 5
1

2
G AB

m ( S AB 1
1

4
h AB

1

i
g 5) 1 A 8m iI (13)

It becomes the usual sl(2, C) 5 so(1, 3)-ruled spinor connection when we

put Q m 5 0, A 8m 5 0.

The corresponding covariant differentiation of bispinors is given by

D m c 5 - m c 1
1

2
G AB

m ( S AB 1
1

4
h AB

1

i
g 5) c 1 qA8m i c (14)

The automorphism group generated by ( S AB , i g 5, iI) preserves V and

acts there as Weyl transformations. Restricting the inhomogeneous transfor-

mation law for A,

(UA )x 5 U (x)AxU(x) 2 1 2 dUxU(x) 2 1 (15)
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to the mentioned group, we obtain the rule

e K
m 8 5 LK

MeM
m , fK m 8 5 fM m L 2 1M

K (16)

G K
N m 8 5 L K

M G M
H m L 2 1H

N 2
- LK

M

- x m L 2 1M
N (17)

A 8m 5 A m (18)

where

h KML K
NLM

H 5 f h NH (19)

Therefore, [ G K
N m ] transforms as an abstract connection ruled by the Lorentz

( f 5 1) or Weyl group, whereas [e K
m ], [ fK m ] obey homogeneous transformation

rules, formally identical with local rotations of tetrads.

We are dealing here with three kinds of linear spaces, TxM, C4, and

V . R4, and three kinds of indices, m , r, and K. It is convenient to unify the

corresponding covariant differentiations based on quantities { l
m n }, v r

s m , and
G K

L m into a single operation, for brevity denoted by D m . It is clear that

D m GrÅ 5 0, D m g Ar
s 5 0 (20)

If det[e A
m Þ 0] and det[ fA m ] Þ 0, then, after the GL(2, C) reduction, they

become ª tetradsº and enable one to construct the following affine connections:

G (e) l
m n : 5 e l

A G A
B n e

B
m 1 e l

AeA
m , n

G ( f ) l
m n : 5 2 fA m G A

B n f l B 1 f l A fA m , n (21)

They have their own torsions and curvatures, S (e), S ( f ), R (e), R ( f ). Obvi-

ously, G (e) and G ( f ) are metrical, respectively, with respect to the following

ª metricº tensors:

h (e) m n 5 h ABe A
m eB

n , h (f ) m n 5 h ABfA m fB n (22)

Let us introduce the following convenient symbols:

E A
m 5

1

2
(e A

m 1 f A
m ), F A

m 5
1

2
(e A

m 2 f A
m ) (23)

E m
A 5 g m n h ABEB

n , F m
A 5 g m n h ABFB

n

Our wave equation for c may be now rewritten in the form

i g A+EA c 1 i A g +FA c 2 W c 1
1

2g
g m n D m D n c 5 0 (24)
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where the ª covariant Lie derivativesº are defined as

+EA c 5 E m
AD m c 1

1

2
(D m E m

A) c (25)

+FA c 5 F m
AD m c 1

1

2
(D m F m

A) c

and

W 5
g

2
h ABE A

m EB
n g m n I 2

g

2
h ABF A

m FB
n g m n 2

c

2gb
I (26)

1 igg m n EA
m FB

n e ABCD S CD

3. CORRESPONDENCE WITH DIRAC THEORY

The above form of wave equation is ª Dirac-likeº , except for two things:

(i) Two kinds of Dirac matrices are present, corresponding to two normal-

hyperbolic signatures ( 1 2 2 2 ), ( 2 1 1 1 ).

(ii) The second-order d’ Alembert term is present.

The first is not very bad, perhaps just desirable if we treat seriously the
conformal symmetry. It turns out that (ii) also need not be catastrophic.

One can show that our field equations possess matter-free ( c 5 0)

solutions with

fA m 5 h ABeB
m , g m n 5 h(e) m n 5 h ABe A

m eB
n (27)

The geometrodynamical sector, in normal conditions, is weakly sensitive to

the matter state, thus, the weak field c imposed onto the above background
satisfies with a very good accuracy

ie m
A(D m 1 S k

k m ) c 2
4bg2 2 c

2bg
c 1

1

2g
g m n D m D n c 5 0 (28)

where now e m
A 5 E m

A, F m
A 5 0, and S is the torsion of G (e). Without the

d’ Alembert term, this would be exactly the Dirac equation in Einstein±Cartan

space. The special-relativistic approximation when e m
A 5 d m

AÃ, S 5 0, and G (e)
5 0 has the form:

i g m - m c 2
4bg2 2 c

2bg
c 1

1

2g
- m - m c 5 0 (29)

The viability of our model depends essentially on whether the above Dirac±

Klein±Gordon equation (DKG) admits a reasonable physical interpretation.
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Of course, it does not fit the Bargmann±Wigner classification of PoincareÂ-

irreducible equations, but this need not exclude its physical utility. Let us

consider the general case of such a DKG equation with non-specified constants
A, B, C:

Ai g m - m c 2 B c 2 C - m - m c 5 0 (30)

It is easily seen that the general solution is a superposition of two Dirac

waves, with masses

m 2 5
1

2C 2 (2BC 1 A2 6 ! A4 1 4A 2BC) (31)

It turns out that instabilities, tachyons, etc., are eliminated if

A 2 1 4BC $ 0 (32)

Of course, we are seriously challenged by the mass-doubling. A few

answers are a priori possible:

(i) Perhaps the splitting is still below the accuracy threshold of our

experiments.

(ii) Perhaps, conversely, the gap is so large that we are unable to excite
the higher state. Let us recall that the two-particle electron±positron state in

the usual Dirac theory may be created only when the frequency of exciting

radiation satisfies

n $ 2mc2 /h

If C ® 0 then m 2 ® | B /A | , m+ ® ` , and the latter resembles what one is

dealing with in Pauli±Villars±Rayski regularization.

(iii) The standard model of electroweak interactions is based on the

experimentally evident kinship between massive leptons and their neutrions

(also, quarks interact weakly in doublets). If B 5 0, there is one massive

and one massless state in the DKG equation. Perhaps the mass splitting is
desirable? Perhaps two massive states of fundamental fermions must be

created by the same field, just as the electron and positron are?

(iv) There is no mass splitting at all and the DKG equation reduces to

the Dirac case if parameters are so tuned that A 2 1 4BC 5 0. Then m 2 5
m+ 5 | B /C | .

In our special case of the DKG equation, A 5 1, B 5 2g 2 c /(2gb), C
5 2 1/(2g), and

m 2 5
c

b
2 2g 2 1 1 6 ! c

bg2 2 3 2 (33)
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The Dirac-like range occurs above the threshold c /b $ 3g 2 at which there

is only one mass m 5 | g | . In general, the mass splitting is given by

D (m 2) 5 4 | g | ! c

b
2 3g 2 (34)

If c /b 5 4g 2, one of the masses vanishes, and the other equals 2 | g | . If c /b
5 0 (and in general, below the threshold 3g 2), there is no Dirac correspon-

dence, but it is not excluded that the symmetry GL(4,C) could be compatible

with fermionic mass generation from nothing (more rigorously, from interac-

tions with the gauge field). To obtain a GL(4,C)-invariant theory of bispinors,

we must admit the mass form G t s to be dynamical.
The above model is intimately connected with certain geometrodynami-

cal theory with degrees of freedom A r
s m , g m n . The very generation of Dirac

behavior from the original Klein±Gordon background is a byproduct of the

spontaneous symmetry breaking from U (2, 2) to SL(2, C) [or even GL(2,

C)]. There is no place here for the geometrodynamical sector analysis. Some

results concerning this aspect may be found in Søawianowski (1996, 1997).
Here we restrict ourselves to stating that there is a correspondence with

PoincareÂ-gauge theories of gravitation and with Einstein’ s theory (Hehl et
al., 1980; Ponomariov et al., 1985; Søawianowski, 1996, 1997). Substituting

in our equations the Einsteinian Ansatz fA m 5 h ABe B
m , g m n 5 ph(e) m n , Q m 5

0, A 8m 5 0, S l
m n 5 0, we reduce them (in the matter-free case, c 5 0), to

R (g) m n 2
1

2
R (g)g m n 5 2

12g 2

p
g m n

1 l 2
24g 2d

p 2 g m n 5 TYM
m n

In this way, even if l 5 0, d 5 0, i.e., if there is no dynamical Hilbert±Einstein
term, we obtain Einstein equations with a cosmological term [controlled by

the coupling constant of the U (2, 2)-gauge field] from the very Yang±Mills

equations for A. There are interesting vacuum solutions corresponding to the

pure gauge, when F 5 0. They correspond to the constant-g-curvature space.

R (g) a b m n 5
4g 2

p
(g a m g b n 2 g a n g b m )

with the additional condition lp 5 24g 2d satisfied automatically if there is
no LHE term in the dynamics.

In a sense, we have obtained the Dirac equation from the Klein±Gordon

equation; first differential order from the second one. But one can obtain an

answer to our objections by using first-order equations from the very begin-



420 Stawianowski

ning. The model will be more complicated, because its geometrodynamical

sector consists of the U (2, 2) connection and the iu(2, 2)-valued differential

form generalizing the tetrad field. It will be reported in a forthcoming paper.
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